COMPLEX EXPONENTIALS

Consider the function: \(f(t) \)
Let it be a well-behaved function (for which derivatives of all orders necessary exist everywhere).

Functions like \(f(t) = \sin \omega t \); \(f(t) = e^{\omega t} \) are acceptable.
Functions like \(|\omega t| \) are not.

Note that in Calculus you learnt (or should have learned) that such functions can be expanded in a Taylor series as follows:

\[
f(t) = f(0) + \frac{df}{dt}(0) t + \frac{d^2f}{dt^2}(0) \frac{t^2}{2!} + \frac{d^3f}{dt^3}(0) \frac{t^3}{3!} + \ldots + \frac{d^n f}{dt^n}(0) \frac{t^n}{n!} + \ldots
\]

where \(n! = n(n-1)(n-2)\ldots(3)(2)(1) \) is read as (n-factorial);
and the derivatives are all evaluated at \(t=0 \). That is, most well-behaved functions can be expressed in the form of a power series!

For example, it should be straightforward for you to obtain the following Taylor series expansions for some common functions:

\[
e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \frac{x^6}{6!} + \frac{x^7}{7!} + \ldots
\]

\[
\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \ldots
\]

\[
\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \ldots
\]

(I am using \(x \) instead of \(t \) now and soon will use something else, but these are just symbols representing the argument of the function under consideration).

Now the meaning of a complex exponential function becomes clear. I just need to set \(x=j\theta \) in the above to get:

\[
e^{j\theta} = 1 + (j\theta) + \frac{(j\theta)^2}{2!} + \frac{(j\theta)^3}{3!} + \frac{(j\theta)^4}{4!} + \ldots + \frac{(j\theta)^n}{n!} + \ldots
\]

\[
= \left\{ \left[1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \frac{\theta^6}{6!} + \ldots \right] + j\left[\frac{\theta^3}{3!} - \frac{\theta^5}{5!} + \frac{\theta^7}{7!} + \ldots \right] \right\}
\]

\[
= \cos \theta + j\sin \theta
\]

where I have used the fact that \(j = \sqrt{-1} \); \(j^2 = -1 \); \(j^3 = j^2 j = -j \); \(j^4 = +1 \); ...

That is, the complex exponential is related to the trigonometric functions: sine and cosine.
We have just derived Euler’s formula.